

 Navigation

 	
 index

 	
 next |

 	SWC / Scripps / 2012-11 0.1 documentation

Software Carpentry workshop at Scripps, Nov 15-16, 2012

NOTE: For real-time help either before or during the workshop, you are welcome to try posting in our chat room: http://j.mp/SWCchat

Your Intrepid Instructors

Workshop materials

	Installation and setup instructions
	Accounts and software install

	Virtual Machine stuff

	Day 1 – the shell, and basic programming
	Introductions and Getting Started

	The Shell

	Introductory Python

	Day 2 – many miscellaneous topics
	Python data structures

	Installing Python packages; useful Python packages

	Useful UNIX tools

	Testing

	Version Control

	Pipelines

Other materials:

The Analyzing Next-Generation Sequencing Data summer course [http://ged.msu.edu/angus/] is a good resource for people
interested in NGS specifically.

For people interested in learning Python, I got really strong positive recommendations for the MIT OpenCourseware [http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/] and Khan Academies [http://www.khanacademy.org/science/computer-science/v/introduction-to-programs-data-types-and-variables] lectures from a course attendee.

Scripps computational info

	IT has set up a temporary server for use by class participants. The server name is it-test7.lj.ad.scripps.edu

	iPython Notebook is available at http://it-test7.lj.ad.scripps.edu:8888/ (NOTE: only available from the Scripps network)

	This server is also available for interactive shell use – SSH to username@it-test7.lj.ad.scripps.edu (replacing ‘username’ with your Scripps username)

	IT also invites users who want to do more computational work to request accounts on garabaldi

	To request an account, please send an email to hpc_ca@scripps.edu

	Account will provide access to two nodes for interactive use, and also the potential of using our high-performance computing (HPC) cluster.

	IT also maintains two general-purpose compute servers: home.scripps.edu, app.scripps.edu

	Both are older machines that currently aren’t well supported.

	We suggest you not use these servers to use/practice the skills learned in this workshop

	To encourage IT to make these more up-to-date and publicized resources, use it-test7

	Also, sign up for the mailing list of the Computational Biology and Bioinformatics (CBB) Affinity Group

	Web sign up: http://lists.scripps.edu/majorcool.cgi

	Or, send email to majordomo@scripps.edu with ‘subscribe cbb’ (no quotes) in the message body

Hipchat

	For the moment, we will leave up the hipchat room. If you feel like it, post your questions and/or answer others’ questions: http://j.mp/SWCchat

	Transcripts

	Wednesday 14th

	Thursday 15th

	Friday 16th

Indices and tables

	Index

	Search Page

dumb edit

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Software Carpentry workshop at Scripps, Nov 15-16, 2012
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Installation and setup instructions

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SWC / Scripps / 2012-11 0.1 documentation

Installation and setup instructions

Please try to accomplish all of the downloading before Thursday morning –
Thanks!

Accounts and software install

	Sign up for a (free) account on Github: http://github.com/.

	Download and install Anaconda CE [http://continuum.io/downloads.html].

	Download and install git [http://git-scm.com/downloads].

Virtual Machine stuff

These instructions are especially important if you’re running Windows.

	Download and install VirtualBox [https://www.virtualbox.org/wiki/Downloads] on your laptop

(click the ‘x86/amd64’ blue link next to your platform).

	Download this very large (2 GB) file [https://s3.amazonaws.com/SWC_JHU2012/swc_jhu2012_r03.ova] to your laptop. (NOTE: from the Scripps network, this link will go much faster [http://sulab.scripps.edu/SoftwareCarpentry/swc_jhu2012_r03.ova].)

	Run VirtualBox and import the virtual machines in the very large file. To do this, go to File -> Import Appliance, browse to the 2 GB file you just downloaded, and click ‘OK’ after all the prompts.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Installation and setup instructions
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 1 – the shell, and basic programming

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SWC / Scripps / 2012-11 0.1 documentation

Day 1 – the shell, and basic programming

	Introductions and Getting Started

	The Shell
	What is the shell?

	The Example: Manipulating Experimental Data Files

	Let’s get started

	Searching files

	Finding files

	Bonus

	Introductory Python
	Running IPython Notebook

	IPython Notebook, a brief intro

	The shell - focus: automating stuff

	
	files & directories;

	creating things;

	pipes and filters;

	loops;

	scripts;

	Intro Python - focus: data processing

	
	Basic operations;

	For loops & if statements;

	Reading, transforming, and writing data;

	Organizing code in functions and modules;

	Scripting with Python;

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 1 – the shell, and basic programming
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Introductions and Getting Started

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SWC / Scripps / 2012-11 0.1 documentation

 	Day 1 – the shell, and basic programming

Introductions and Getting Started

Intro:

	Instructors: Tracy Teal, Titus Brown

	TAs: Qingpeng Zhang, Cait Pickens

	Where are the materials? Here! http://swc-scripps.idyll.org/

	Online chat? Here! http://j.mp/SWCchat

	
	Comments? Questions? Fixes?

	
	You can add comments at the bottom of each page.

	You can also edit each page on github, and suggest them as changes.

	The schedule is adaptable! Day 2 will be adjusted to how Day 1 goes, plus some.

	Everything we talk about will be available through this Web site, one way or another...

	Ask questions!

	Watch for the cliffs: everything is going along fine and whups, that’s a big step...

Getting started:

	Please partner with someone that you know and has similar challenges.

	Please send to Tracy and Titus (tnt@idyll.org) a ~one
paragraph description of a specific research problem that you are
having. For example, “I am working on a marine organism and we
got 5000 genes from sequencing and I need to figure out what
their matches are in another organism and I want to automate the
process.”

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Introductions and Getting Started
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 The Shell

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SWC / Scripps / 2012-11 0.1 documentation

 	Day 1 – the shell, and basic programming

The Shell

Updated and presented by: Tracy Teal

Based on materials originally developed by: Milad Fatenejad, Katy Huff, Jonathon Dursi, and Sasha Wood

What is the shell?

The shell is a program that presents a command line interface
which allows you to control your computer using commands entered
with a keyboard instead of controlling graphical user interfaces
(GUIs) with a mouse/keyboard combination.

Use a browser to open the tutorial on github and type in the URL:

github.com/swcarpentry/2012-11-scripps

Click on the directory named 1-Shell.

A terminal is a program you run that gives you access to the
shell. There are many different terminal programs that vary across
operating systems.

There are many reasons to learn about the shell. In my opinion, the
most important reasons are that:

	It is very common to encounter the shell and
command-line-interfaces in scientific computing, so you will
probably have to learn it eventually

	The shell is a really powerful way of interacting with your
computer. GUIs and the shell are complementary - by knowing both
you will greatly expand the range of tasks you can accomplish with
your computer. You will also be able to perform many tasks more
efficiently.

The shell is just a program and there are many different shell
programs that have been developed. The most common shell (and the one
we will use) is called the Bourne-Again SHell (bash). Even if bash is
not the default shell, it usually installed on most systems and can be
started by typing bash in the terminal. Many commands, especially a
lot of the basic ones, work across the various shells but many things
are different. I recommend sticking with bash and learning it well.

To open a terminal, just single click on the “Terminal” icon on the
Desktop.

The Example: Manipulating Experimental Data Files

We will spend most of our time learning about the basics of the shell
by manipulating some experimental data from a set of hearing tests. To get
the data for this test, you will need internet access. Just enter the
command:

git clone https://github.com/swcarpentry/2012-11-scripps.git

This will grab all of the data needed for this workshop from the
internet.

Let’s get started

One very basic command is echo. This command is just prints text to
the terminal. Try entering the command:

echo Hello, World

Then press enter. You should see the text “Hello, World” printed back
to you. The echo command is useful for printing from a shell script,
for displaying variables, and for generating known values to pass
to other programs.

Moving around the file system

Let’s learn how to move around the file system using command line
programs. This is really easy to do using a GUI (just click on
things). Once you learn the basic commands, you’ll see that it is
really easy to do in the shell too.

First we have to know where we are. The program pwd (print working
directory) tells you where you are sitting in the directory tree. The
command ls will list the files in files in the current
directory. Directories are often called “folders” because of how they
are represented in GUIs. Directories are just listings of files. They
can contain other files or directories.

Whenever you start up a terminal, you will start in a special
directory called the home directory. Every user has their own home
directory where they have full access to do whatever they want. In
this case, the pwd command tells us that we are in the /home/username
directory. This is the home directory for the username user. That is our
user name. You can always find out your user name by entering the
command whoami.

File Types

When you enter the ls command lists the contents of the current
directory. There are several items in the home directory, notice that
they are all colored blue. This tells us that all of these items are
directories as opposed to files.

Lets create an empty file using the touch command. Enter the
command:

touch testfile

Then list the contents of the directory again. You should see that a
new entry, called testfile, exists. It is colored white meaning that
it is a file, as opposed to a directory. The touch command just
creates an empty file.

Some terminals will not color the directory entries in this very
convenient way. In those terminals, use ls -F instead of ls. The
-F argument modifies the results so that a slash is placed at the
end of directories. If the file is executable meaning that it can be
run like a program, then a star fill be placed of the file name.

You can also use the command ls -l to see whether items in a
directory are files or directories. ls -l gives a lot more
information too, such as the size of the file and information about
the owner. If the entry is a directory, then the first letter will be
a “d”. The fifth column shows you the size of the entries in
bytes. Notice that testfile has a size of zero.

To get the size of the files in human readable format add a -h. This is very
nice when you’re working with big files and get tired of counting all the zeros.

Also, some files are hidden. They usually start with a . If you want to see those
files, you can add a -a.

So, a standard ‘ls’ command might be ‘ls -alFh’ or ‘ls -lFh’

Now, let’s get rid of testfile. To remove a file, just enter the
command:

rm testfile

The rm command can be used to remove files. If you enter ls again,
you will see that testfile is gone.

Changing Directories

Now, let’s move to a different directory. The command cd (change
directory) is used to move around. Let’s move into the 2012-11-scripps
directory. Enter the following command:

cd 2012-11-scripps

Now use the ls command to see what is inside this directory. You
will see that there is an entry which is green. This means that this
is an executable. If you use ls -F you will see that this file ends
with a star.

This directory contains all of the material for this boot camp. Now
move to the directory containing the data for the shell tutorial:

cd 1-Shell

If you enter the cd command by itself, you will return to the home
directory. Try this, and then navigate back to the 1-Shell
directory.

Arguments

Most programs take additional arguments that control their exact
behavior. For example, -F and -l are arguments to ls. The ls
program, like many programs, take a lot of arguments. But how do we
know what the options are to particular commands?

Most commonly used shell programs have a manual. You can access the
manual using the man program. Try entering:

man ls

This will open the manual page for ls. Use the space key to go
forward and b to go backwards. When you are done reading, just hit q
to exit.

Programs that are run from the shell can get extremely complicated. To
see an example, open up the manual page for the find program,
which we will use later this session. No one can possibly learn all of
these arguments, of course. So you will probably find yourself
referring back to the manual page frequently.

Examining the contents of other directories

By default, the ls commands lists the contents of the working
directory (i.e. the directory you are in). You can always find the
directory you are in using the pwd command. However, you can also
give ls the names of other directories to view. Navigate to the
home directory if you are not already there. Then enter the
command:

ls 2012-11-scripps

This will list the contents of the 2012-11-scripps directory without
you having to navigate there. Now enter:

ls 2012-11-scripps/1-Shell

This prints the contents of 1-Shell. The cd command works in a
similar way. Try entering:

cd 2012-11-scripps/1-Shell

and you will jump directly to 1-Shell without having to go through
the intermediate directory.

Full vs. Relative Paths

The cd command takes an argument which is the directory
name. Directories can be specified using either a relative path a
full path. The directories on the computer are arranged into a
hierarchy. The full path tells you where a directory is in that
hierarchy. Navigate to the home directory. Now, enter the pwd
command and you should see:

/home/username

which is the full name of your home directory. This tells you that you
are in a directory called username, which sits inside a directory called
home which sits inside the very top directory in the hierarchy. The
very top of the hierarchy is a directory called / which is usually
referred to as the root directory. So, to summarize: username is a
directory in home which is a directory in /.

Now enter the following command:

cd /home/username/2012-11-scripps/1-Shell

This jumps to 1-Shell. Now go back to the home directory. We saw
earlier that the command:

cd 2012-11-scripps/1-Shell

had the same effect - it took us to the 1-Shell directory. But,
instead of specifying the full path
(/home/username/2012-11-scripps/1-Shell), we specified a relative path. In
other words, we specified the path relative to our current
directory. A full path always starts with a /. A relative path does
not. You can usually use either a full path or a relative path
depending on what is most convenient. If we are in the home directory,
it is more convenient to just enter the relative path since it
involves less typing.

Now, list the contents of the /bin directory. Do you see anything
familiar in there?

Saving time with shortcuts, wild cards, and tab completion

Shortcuts

There are some shortcuts which you should know about. Dealing with the
home directory is very common. So, in the shell the tilde character,
~, is a shortcut for your home directory. Navigate to the 1-Shell
directory, then enter the command:

ls ~

This prints the contents of your home directory, without you having to
type the full path. The shortcut .. always refers to the directory
above your current directory. Thus:

ls ..

prints the contents of the /home/username/2012-11-scripps. You can chain
these together, so:

ls ../../

prints the contents of /home/username which is your home
directory. Finally, the special directory . always refers to your
current directory. So, ls, ls ., and ls ././././. all do the
same thing, they print the contents of the current directory. This may
seem like a useless shortcut right now, but we’ll see when it is
needed in a little while.

To summarize, the commands ls ~, ls ~/., ls ../../, and ls
/home/username all do exactly the same thing. These shortcuts are not
necessary, they are provided for your convenience.

Our data set: Cochlear Implants

A cochlear implant is a small electronic device that is surgically
implanted in the inner ear to give deaf people a sense of
hearing. More than a quarter of a million people have them, but there
is still no widely-accepted benchmark to measure their effectiveness.
In order to establish a baseline for such a benchmark, a researcher
got teenagers with CIs to listen to audio files on their computer and
report:

	the quietest sound they could hear

	the lowest and highest tones they could hear

	the narrowest range of frequencies they could discriminate

To participate, subjects came to a laboratory and one of the lab
techs played an audio sample, and recorded their data - when they
first heard the sound, or first heard a difference in the sound. Each
set of test results were written out to a text file, one set per file.
Each participant has a unique subject ID, and a made-up subject name.
Each experiment has a unique experiment ID. The experiment has
collected 351 files so far.

The data is a bit of a mess! There are inconsistent file names, there
are extraneous “NOTES” files that we’d like to get rid of, and the
data is spread across many directories. We are going to use shell
commands to get this data into shape. By the end we would like to:

	Put all of the data into one directory called “alldata”

	Have all of the data files in there, and ensure that every file
has a ”.txt” extension

	Get rid of the extraneous “NOTES” files

If we can get through this example in the available time, we will move
onto more advanced shell topics...

Wild cards

Navigate to the ~/2012-11-scripps/1-Shell/data/THOMAS directory. This
directory contains our hearing test data for THOMAS. If we type ls,
we will see that there are a bunch of files which are just four digit
numbers. By default, ls lists all of the files in a given
directory. The * character is a shortcut for “everything”. Thus, if
you enter ls *, you will see all of the contents of a given
directory. Now try this command:

ls *1

This lists every file that ends with a 1. This command:

ls /usr/bin/*.sh

Lists every file in /usr/bin that ends in the characters .sh. And
this command:

ls *4*1

lists every file in the current directory which contains the number
4, and ends with the number 1. There are four such files: 0241,
0341, 0431, and 0481.

So how does this actually work? Well...when the shell (bash) sees a
word that contains the * character, it automatically looks for files
that match the given pattern. In this case, it identified four such
files. Then, it replaced the *4*1 with the list of files, separated
by spaces. In other the two commands:

ls *4*1
ls 0241 0341 0431 0481

are exactly identical. The ls command cannot tell the difference
between these two things.

Short Exercise

Do each of the following using a single ls command without
navigating to a different directory.

	List all of the files in /bin that contain the letter a

	List all of the files in /bin that contain the letter a or the letter b

	List all of the files in /bin that contain the letter a AND the letter b

Tab Completion

Navigate to the home directory. Typing out directory names can waste a
lot of time. When you start typing out the name of a directory, then
hit the tab key, the shell will try to fill in the rest of the
directory name. For example, enter:

cd 2<tab>

The shell will fill in the rest of the directory name for
2012-11-scripps. Now enter:

ls i<tab><tab>

When you hit the first tab, nothing happens. The reason is that there
are multiple directories in the home directory which start with
i. Thus, the shell does not know which one to fill in. When you hit
tab again, the shell will list the possible choices.

Tab completion can also fill in the names of programs. For example,
enter e<tab><tab>. You will see the name of every program that
starts with an e. One of those is echo. If you enter ec<tab> you
will see that tab completion works.

** Command History**

You can easily access previous commands. Hit the up arrow.
Hit it again. You can step backwards through your command history.
The down arrow takes your forwards in the command history.

^-C will cancel the command you are writing, and give you a fresh prompt.

^-R will do a reverse-search through your command history. This
is very useful.

Which program?

Commands like ls, rm, echo, and cd are just ordinary programs
on the computer. A program is just a file that you can execute. The
program which tells you the location of a particular program. For
example:

which ls

Will return “/bin/ls”. Thus, we can see that ls is a program that
sits inside of the /bin directory. Now enter:

which find

You will see that find is a program that sits inside of the
/usr/bin directory.

So ... when we enter a program name, like ls, and hit enter, how
does the shell know where to look for that program? How does it know
to run /bin/ls when we enter ls. The answer is that when we enter
a program name and hit enter, there are a few standard places that the
shell automatically looks. If it can’t find the program in any of
those places, it will print an error saying “command not found”. Enter
the command:

echo $PATH

This will print out the value of the PATH environment variable. More
on environment variables later. Notice that a list of directories,
separated by colon characters, is listed. These are the places the
shell looks for programs to run. If your program is not in this list,
then an error is printed. The shell ONLY checks in the places listed
in the PATH environment variable.

Navigate to the 1-Shell directory and list the contents. You will
notice that there is a program (executable file) called hello in
this directory. Now, try to run the program by entering:

hello

You should get an error saying that hello cannot be found. That is
because the directory /home/username/2012-11-scripps/1-Shell is not in the
PATH. You can run the hello program by entering:

./hello

Remember that . is a shortcut for the current working
directory. This tells the shell to run the hello program which is
located right here. So, you can run any program by entering the path
to that program. You can run hello equally well by specifying:

/home/username/2012-11-scripps/1-Shell/hello

Or by entering:

../1-Shell/hello

When there are no / characters, the shell assumes you want to look
in one of the default places for the program.

Examining Files

We now know how to switch directories, run programs, and look at the
contents of directories, but how do we look at the contents of files?

The easiest way to examine a file is to just print out all of the
contents using the program cat. Enter the following command:

cat ex_data.txt

This prints out the contents of the ex_data.txt file. If you enter:

cat ex_data.txt ex_data.txt

It will print out the contents of ex_data.txt twice. cat just
takes a list of file names and writes them out one after another (this
is where the name comes from, cat is short for concatenate).

If there’s a bunch of things on your screen and you want to clean it up a
bit, you can type ‘clear’ and that will clear your screen so you have a
shiny prompt at the top of your screen.

Short Exercises

	Print out the contents of the ~/2012-11-scripps/1-Shell/dictionary.txt
file. What does this file contain?

	Without changing directories, (you should still be in 1-Shell),
use one short command to print the contents of all of the files in
the /home/username/2012-11-scripps/1-Shell/data/THOMAS directory.

cat is a terrific program, but when the file is really big, it can
be annoying to use. The program, less, is useful for this
case. Enter the following command:

less ~/2012-11-scripps/1-Shell/dictionary.txt

less opens the file, and lets you navigate through it. The commands
are identical to the man program. Use “space” to go forward and hit
the “b” key to go backwards. The “g” key goes to the beginning of the
file and “G” goes to the end. Also, the arrow keys work for navigating
up and down. Finally, hit “q” to quit.

less also gives you a way of searching through files. Just hit the
“/” key to begin a search. Enter the name of the word you would like
to search for and hit enter. It will jump to the next location where
that word is found. Try searching the dictionary.txt file for the
word “cat”. If you hit “/” then “enter”, less will just repeat
the previous search. You can also type “n” for it to go to the next
one it finds. less searches from the current location and
works its way forward. If you are at the end of the file and search
for the word “cat”, less will not find it. You need to go to the
beginning of the file and search.

Remember, the man program uses the same commands, so you can search
documentation using “/” as well!

Short Exercise

Use the commands we’ve learned so far to figure out how to search
in reverse while using less.

Redirection

Let’s turn to the experimental data from the hearing tests that we
began with. This data is located in the ~/2012-11-scripps/1-Shell/data
directory. Each subdirectory corresponds to a particular participant
in the study. Navigate to the Bert subdirectory in data. There
are a bunch of text files which contain experimental data
results. Lets print them all:

cat au*

Now enter the following command:

cat au* > ../all_data

This tells the shell to take the output from the cat au* command and
dump it into a new file called ../all_data. To verify that this
worked, examine the all_data file. If all_data had already
existed, we would overwritten it. So the > character tells the shell
to take the output from what ever is on the left and dump it into the
file on the right. The >> characters do almost the same thing,
except that they will append the output to the file if it already
exists.

Short Exercise

Use >>, to append the contents of all of the files which contain the
number 4 in the directory:

/home/username/2012-11-scripps/1-Shell/data/gerdal

to the existing all_data file. Thus, when you are done all_data
should contain all of the experiment data from Bert and any
experimental data file from gerdal that contains the number 4.

Creating, moving, copying, and removing

We’ve created a file called all_data using the redirection operator
>. This is critical file so we have to make copies so that the data
is backed up. Lets copy the file using the cp command. The cp
command backs up the file. Navigate to the data directory and enter:

cp all_data all_data_backup

Now all_data_backup has been created as a copy of all_data. We can
move files around using the command mv. Enter this command:

mv all_data_backup /tmp/

This moves all_data_backup into the directory /tmp. The directory
/tmp is a special directory that all users can write to. It is a
temporary place for storing files. Data stored in /tmp is
automatically deleted when the computer shuts down.

The mv command is also how you rename files. Since this file is so
important, let’s rename it:

mv all_data all_data_IMPORTANT

Now the file name has been changed to all_data_IMPORTANT. Let’s delete
the backup file now:

rm /tmp/all_data_backup

The mkdir command is used to create a directory. Just enter mkdir
followed by a space, then the directory name.

Short Exercise

Do the following:

	Rename the all_data_IMPORTANT file to all_data.

	Create a directory in the data directory called foo

	Then, copy the all_data file into foo

By default, rm, will NOT delete directories. You can tell rm to
delete a directory using the -r option. Enter the following command:

rm -r foo

Count the words

The wc program (word count) counts the number of lines, words, and
characters in one or more files. Make sure you are in the data
directory, then enter the following command:

wc Bert/* gerdal/*4*

For each of the files indicated, wc has printed a line with three
numbers. The first is the number of lines in that file. The second is
the number of words. Finally, the total number of characters is
indicated. The final line contains this information summed over all of
the files. Thus, there were 10445 characters in total.

Remember that the Bert/* and gerdal/*4* files were merged
into the all_data file. So, we should see that all_data contains
the same number of characters:

wc all_data

Every character in the file takes up one byte of disk space. Thus, the
size of the file in bytes should also be 10445. Let’s confirm this:

ls -l all_data

Remember that ls -l prints out detailed information about a file and
that the fifth column is the size of the file in bytes.

Short Exercise

Figure out how to get wc to print just the number of lines in
all_data.

The awesome power of the Pipe

Suppose I wanted to only see the total number of character, words, and
lines across the files Bert/* and gerdal/*4*. I don’t want to
see the individual counts, just the total. Of course, I could just do:

wc all_data

Since this file is a concatenation of the smaller files. Sure, this
works, but I had to create the all_data file to do this. Thus, I
have wasted a precious 7062 bytes of hard disk space. We can do this
without creating a temporary file, but first I have to show you two
more commands: head and tail. These commands print the first few,
or last few, lines of a file, respectively. Try them out on
all_data:

head all_data
tail all_data

The -n option to either of these commands can be used to print the
first or last n lines of a file. To print the first/last line of the
file use:

head -n 1 all_data
tail -n 1 all_data

Let’s turn back to the problem of printing only the total number of
lines in a set of files without creating any temporary files. To do
this, we want to tell the shell to take the output of the wc Bert/*
gerdal/*4* and send it into the tail -n 1 command. The |
character (called pipe) is used for this purpose. Enter the following
command:

wc Bert/* gerdal/Data0559 | tail -n 1

This will print only the total number of lines, characters, and words
across all of these files. What is happening here? Well, tail, like
many command line programs will read from the standard input when it
is not given any files to operate on. In this case, it will just sit
there waiting for input. That input can come from the user’s keyboard
or from another program. Try this:

tail -n 2

Notice that your cursor just sits there blinking. Tail is waiting for
data to come in. Now type:

French
fries
are
good

then CONTROL+d. You should is the lines:

are
good

printed back at you. The CONTROL+d keyboard shortcut inserts an
end-of-file character. It is sort of the standard way of telling the
program “I’m done entering data”. The | character is replaces the
data from the keyboard with data from another command. You can string
all sorts of commands together using the pipe.

The philosophy behind these command line programs is that none of them
really do anything all that impressive. BUT when you start chaining
them together, you can do some really powerful things really
efficiently. If you want to be proficient at using the shell, you must
learn to become proficient with the pipe and redirection operators::
|, >, >>.

A sorting example

Let’s create a file with some words to sort for the next example. We
want to create a file which contains the following names:

Bob
Alice
Diane
Charles

To do this, we need a program which allows us to create text
files. There are many such programs, the easiest one which is
installed on almost all systems is called nano. Navigate to /tmp
and enter the following command:

nano toBeSorted

Now enter the four names as shown above. When you are done, press
CONTROL+O to write out the file. Press enter to use the file name
toBeSorted. Then press CONTROL+x to exit nano.

When you are back to the command line, enter the command:

sort toBeSorted

Notice that the names are now printed in alphabetical order.

Short Exercise

Use the echo command and the append operator, >>, to append your
name to the file, then sort it.

Let’s navigate back to ~/2012-11-scripps/1-Shell/data. You should still
have the all_data file hanging around here. Enter the following command:

wc Bert/* | sort -k 3 -n

We are already familiar with what the first of these two commands
does: it creates a list containing the number of characters, words,
and lines in each file in the Bert directory. This list is then
piped into the sort command, so that it can be sorted. Notice there
are two options given to sort:

	-k 3: Sort based on the third column

	-n: Sort in numerical order as opposed to alphabetical order

Notice that the files are sorted by the number of characters.

Short Exercise

Combine the wc, sort, head and tail commands so that only the
wc information for the largest file is listed

Hint: To print the smallest file, use:

wc Bert/* | sort -k 3 -n | head -n 1

Printing the smallest file seems pretty useful. We don’t want to type
out that long command often. Let’s create a simple script, a simple
program, to run this command. The program will look at all of the
files in the current directory and print the information about the
smallest one. Let’s call the script smallest. We’ll use nano to
create this file. Navigate to the data directory, then:

nano smallest

Then enter the following text:

#!/bin/bash
wc * | sort -k 3 -n | head -n 1

Now, cd into the Bert directory and enter the command
../smallest. Notice that it says permission denied. This happens
because we haven’t told the shell that this is an executable
file. Enter the following commands:

chmod a+x ../smallest
../smallest

The chmod command is used to modify the permissions of a file. This
particular command modifies the file ../smallest by giving all users
(notice the a) permission to execute (notice the x) the file. If
you enter:

ls ../smallest

You will see that the file name is green. Congratulations, you just
created your first shell script!

Searching files

You can search the contents of a file using the command grep. The
grep program is very powerful and useful especially when combined
with other commands by using the pipe. Navigate to the Bert
directory. Every data file in this directory has a line which says
“Range”. The range represents the smallest frequency range that can be
discriminated. Lets list all of the ranges from the tests that Bert
conducted:

grep Range *

Short Exercise

Create an executable script called smallestrange in the data
directory, that is similar to the smallest script, but prints the
file containing the file with the smallest Range. Use the commands
grep, sort, and tail to do this.

Finding files

The find program can be used to find files based on arbitrary
criteria. Navigate to the data directory and enter the following
command:

find . -print

This prints the name of every file or directory, recursively, starting
from the current directory. Let’s exclude all of the directories:

find . -type f -print

This tells find to locate only files. Now try these commands:

find . -type f -name "*1*"
find . -type f -name "*1*" -or -name "*2*" -print
find . -type f -name "*1*" -and -name "*2*" -print

The find command can acquire a list of files and perform some
operation on each file. Try this command out:

find . -type f -exec grep Volume {} \;

This command finds every file starting from .. Then it searches each
file for a line which contains the word “Volume”. The {} refers to
the name of each file. The trailing ; is used to terminate the
command. This command is slow, because it is calling a new instance
of grep for each item the find returns.

A faster way to do this is to use the xargs command:

find . -type f -print | xargs grep Volume

find generates a list of all the files we are interested in,
then we pipe them to xargs. xargs takes the items given to it
and passes them as arguments to grep. xargs generally only creates
a single instance of grep (or whatever program it is running).

Short Exercise

Navigate to the data directory. Use one find command to perform each
of the operations listed below (except number 2, which does not
require a find command):

	Find any file whose name is “NOTES” within data and delete it

	Create a new directory called cleaneddata

	Move all of the files within data to the cleaneddata directory

	Rename all of the files to ensure that they end in .txt (note::
it is ok for the file name to end in .txt.txt

Hint: If you make a mistake and need to start over just do the
following:

	Navigate to the 1-Shell directory

	Delete the data directory

	Enter the command: git checkout – data You should see that the
data directory has reappeared in its original state

BONUS

Redo exercise 4, except rename only the files which do not already end
in .txt. You will have to use the man command to figure out how to
search for files which do not match a certain name.

Bonus

backtick, xargs: Example find all files with certain text

alias -> rm -i

variables -> use a path example

.bashrc

du

ln

ssh and scp

Regular Expressions

Permissions

Chaining commands together

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 The Shell
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Introductory Python

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SWC / Scripps / 2012-11 0.1 documentation

 	Day 1 – the shell, and basic programming

Introductory Python

We’ll be looking at the following IPython Notebooks, all of which
are under the python/ directory of the git repository:

Scientific Python basics: python-full.ipynb [http://nbviewer.ipython.org/urls/raw.github.com/swcarpentry/2012-11-scripps/master/python/python-full.ipynb]

Plotting with matplotlib: matplotlib-full.ipynb [http://nbviewer.ipython.org/urls/raw.github.com/swcarpentry/2012-11-scripps/master/python/matplotlib-full.ipynb]

Reading and writing files: readwrite-full.ipynb [http://nbviewer.ipython.org/urls/raw.github.com/swcarpentry/2012-11-scripps/master/python/readwrite-full.ipynb]

—

Loading and plotting files: loading-and-plotting-data.ipynb [http://nbviewer.ipython.org/urls/raw.github.com/swcarpentry/2012-11-scripps/master/python/loading-and-plotting-data.ipynb]

make_figure.py script [https://github.com/swcarpentry/2012-11-scripps/blob/master/python/make_figure.py]

End of day data Analysis mix: end-of-day-data-analysis.ipynb [http://nbviewer.ipython.org/urls/raw.github.com/swcarpentry/2012-11-scripps/master/python/end-of-day-data-analysis.ipynb]

Running IPython Notebook

Honestly, the hardest part is just getting things running :(. Pick whichever
one of the solutions below works...

Running the notebook on Mac OS X using Anaconda CE

Once you get the Anaconda CE file (see Installation and setup instructions for download links!),
go run it at the command line – double clicking it doesn’t seem to work :(.

This should be as simple as opening up a Terminal window and typing:

bash ~/Downloads/AnacondaCE-1.2.0-macosx.sh

and answering all the questions with the defaults (‘yes’ where appropriate).

Then, once it’s all done installing, cd to the git directory that you
downloaded earlier, cd into the python/ subdirectory, and type

~/anaconda/bin/ipython notebook --pylab=inline

Your Web browser should pop up. Tada!

Running the notebooks in the Virtual Box virtual machine

Start up your virtual machine (see Installation and setup instructions for instructions on
installing VirtualBox), and then click ‘Terminal’. Inside of terminal, run
the following commands:

git clone https://github.com/swcarpentry/2012-11-scripps
ls
cd 2012-11-scripps/
ls
cd python
ls
./run-in-vm.sh

(You can copy on your Web browser, and then paste into the Terminal in
your VM with ‘ctrl-shift-V’.)

This will start up a Firefox browser pointing at IPython Notebook

Extra – upgrading ipython notebook

You can upgrade ipython notebook to a newer version like so. Type:

sudo apt-get install python-pip
sudo pip install --upgrade ipython

This will take a few minutes to do, because it has to download some files...

IPython Notebook, a brief intro

The IPython Notebook (ipynb for short) is a simple notebook interface
to Python that lets you interactively run Python code and view figures
and graphics. You can load, save, and download notebooks as a record
of your research as well as for interaction with colleagues.

The main thing you need to know about IPython is that to execute code
in a cell, you hit Shift-ENTER.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Introductory Python
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 2 – many miscellaneous topics

 Navigation

 	
 index

 	
 previous |

 	SWC / Scripps / 2012-11 0.1 documentation

Day 2 – many miscellaneous topics

You should all start reading XKCD [http://xkcd.com].

Python data structures

See Python data structures

Installing Python packages; useful Python packages

See Installing Python packages; useful Python packages

Useful UNIX tools

ssh and screen; BLAST.

SSH instructions here

Installing and using command line BLAST

Testing

When we say “testing” we really mean automated testing.
The central problems addressed by testing are correctness and
reproducibility. (While these are linked, they are not the
same!)

There are two basic kinds of tests that I’d like to briefly
discuss. One kind of test is a unit test. The other kind
of test is a regression test. (There are also many more.)

Unit tests address small units of code, like functions. They
are used to isolate and nail down and prove the functionality
of potentially complicated little functions.

Regression tests address the overall function of code, and
they are used to make sure that your code is doing the same
thing today as it was yesterday.

I’ll show you examples of both, but quickly :).

Writing tests

We’re going to be using the nose testing framework, which is
just a framework that makes it easy to find and execute
tests.

Basically, ‘nose’ creates a command ‘nosetests’ that finds and
runs tests. The idea is that you won’t need to register new tests.

A test function looks like this:

def test_something():
 # run some code
 # fail loudly or succeed silently

See testing-with-nose.ipynb [http://nbviewer.ipython.org/urls/raw.github.com/swcarpentry/2012-11-scripps/master/python/testing-with-nose.ipynb].

More reading

For more reading, see:

http://software-carpentry.org/4_0/test/

and

http://ivory.idyll.org/articles/nose-intro.html

and also

http://ivory.idyll.org/blog/software-quality-death-spiral.html

Version Control

(An abbreviated version of: http://ged.msu.edu/angus/git-intro.html)

The purpose of version control is to serve as a method for tacking
changes to files, which enables lots of things:

	track changes (wanted and unwanted) in your files.

	keep track of an entire history of changes.

	track multiple independent “branches” of work.

	collaborate sanely.

A brief introduction:

	Web interface and editing files.

	One-person repositories.

	One-person repositories with multiple locations.

	One-person repositories with branches.

	Collaborations!

Pipelines

Operating on more complex files.

Doing stuff with BLAST output.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 2 – many miscellaneous topics
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Index

 Navigation

 	
 index

 	SWC / Scripps / 2012-11 0.1 documentation

Index

 Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Python2/index.html

 Navigation

 		
 index

 		SWC / Scripps / 2012-11 0.1 documentation »

Python Data Structures

Updated and presented by: Tracy Teal

Adapted from Software Carpentry materials
http://software-carpentry.org/

Starting an iPython notebook
Mac
~/anaconda/bin/ipython notebook –pylab=inline
PC
./run-in-vm.sh

Python Lists

SWC Tutorial: http://software-carpentry.org/4_0/python/lists/

Collections let us store many values together

The most common way we do this is with a list

We create a list in Python with

listname = ['a', 'b', 'c', 'd']

example

gases = ['He', 'Ne', 'Ar', 'Kr']

The index for lists starts with 0 instead of 1, so the first item in a list
is item 0

gases[0] would return 'He'
gases[1] would return 'Ne'

You can also get items from the end of the list

gases[-1] would return 'Kr'
gases[-2] would return 'Ar'

Use

len(listname)

to get the length of the list, or how many values are in the list.

You can also change a list after you make it. If you want to change,
say Kr to K you can do

gases[3] = 'K'

Now your list will be: [‘He’, ‘Ne’, ‘Ar’, ‘K’]

Lists can store values of many kinds, even other lists

helium = ['He', 2]
neon = ['Ne', 8]
gases = [helium, neon]

Now if you want do something to every item in the list, you can use a loop

gases = ['He', 'Ne', 'Ar', 'Kr']
i = 0
while i < len(gases):
 print gases[i]
 i += 1

This will print out each of the gases.

A better way to do this would be to use a ‘for’ loop

for i in gases:
 print i

This will also print out each gas.

You can use if statements to see if something in the list is true

if 'Pu' in gases:
 print 'But plutonium is not a gas'
else:
 print 'The universe is well ordered'

Some useful list methods

You can append items to the list:

gases.append('H')

You can print out how many of something is in the list:

print gases.count('He')

You can print where the item is in the list:

print gases.index('Ne')

Dictionaries

SWC Tutorial: http://software-carpentry.org/4_0/setdict/dict/

Dictionaries have key, value pairs. Here is an example of a dictionary.

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()
['guido', 'irv', 'jack']
>>> 'guido' in tel
True

You can loop over items in a dictionary the same way you can over items in a
list.

for keys in tel:
 print tel[keys]

If you want to mix some text in with your printing

for keys in tel:
 print 'This is the number', tel[keys]

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Python Data Structures
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

SSH/blast.html

 Navigation

 		
 index

 		SWC / Scripps / 2012-11 0.1 documentation »

 Installing and running standalone BLAST

BLAST - Basic Local Alignment Search Tool

**** Download the BLAST program ****
Use an FTP client or Firefox and go to
ftp://ftp.ncbi.nih.gov/blast/executables/

Click on ‘LATEST’

For Macs you can use the .dmg file
Scroll to the bottom of the page and click on or transfer the *.dmg file
Right now that file is
ncbi-blast-2.2.25+.dmg

Go find that file and double click it
A folder will open with the ncbi-blast-2.2.25+.pkg file in it

double click on that file and click through the steps to install it

It’s installed!

Modify the .ncbirc file that was just created in your directory to have it point to the place where you’ll be creating your databases

Open a terminal and at the command line type

pico .ncbirc

Make the changes
e.g.

[BLAST]
BLASTDB=/Applications/ncbi-blast-2.2.24+/db

To save and exit type
Ctrl-X
when it asks you if you want to save, type Y and then Enter when it asks if you want to save to .ncbirc

**** Creating a blast database ****

Now you can create your own BLAST databases
You can create a BLAST database from any FASTA file

There’s some additional information in the README_BLAST file

There are preformatted ones for things like nr on NCBI
ftp://ftp.ncbi.nih.gov/blast/db/

and you can download any sequenced microbial genome
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/

If the databases are really big, like they are for nr, it’s not something you’ll want to do on your local computer. A server or the HPCC is better for that.

—- To create your own database from your own FASTA file —-

Copy the file into the blast database directory you just referenced in the .ncbirc

Here we’ll use a test FASTA file (provided)

test_fasta.fasta

The ‘formatdb’ command creates the databases

		
-i
		is the input file

-n is the name that you want for your database
-p is the type of file (protein T, or nucleotide F)

If you type

formatdb -
you get all the options

Run the formatdb command with both -p T and -p F so you get both the nucleotide and protein database. The different blast programs require the different databases.

formatdb -i test_fasta.fasta -n test_fasta -p T

and

formatdb -i test_fasta.fasta -n test_fasta -p F

Now if you look in that directory you have new files and those are your blast databases

**** Running BLAST ****

The command to run BLAST is ‘blastall’

If you type
blastall -
You get all the options

This is a standard blastall command

blastall -e 1e-05 -p tblastx -d test_fasta -i seqs.fa -o seqs.blast

-e is the e-value cutoff you want to use. Any matches higher than that will not be returned
-p is the program - tblastx, blastx, blastn or tblastn
-d is the database
-i is the input file
-o is the output file
-m is the output type you want

If you’re parsing the output, then you want to use -m 8. It outputs a tab delimited format that’s easy to look through
The default shows you all the alignments

If you do use -m 8 this is the information in each column

Query id # Subject id # % identity # alignment length # number of mismatches # number of gap openings # position of query start # position of query end # position of subject start # position of subject end # e-value of a hit # bit score of a hit

That’s it, now you have your blast information and you can parse the BLAST output

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 <no title>
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_static/minus.png

_static/comment-bright.png

_static/16.html
		2012-11-16T16:49:51+0000		Titus Brown		Testing.

		2012-11-16T16:53:37+0000		Qingpeng(Q.P.) Zhang		it works

		2012-11-16T17:23:05+0000		Anita Pottekat		For Mac to to exceute the command is it shift+enter ??

		2012-11-16T17:23:19+0000		Titus Brown		Yes, Anita.

		2012-11-16T17:24:05+0000		Anita Pottekat		Thanks Titus. But I have connected to Mac remotely .. from windows ... it didn't work

		2012-11-16T17:25:51+0000		Anita Pottekat		can I get some help, please ??

		2012-11-16T17:26:06+0000		Jason Keller		In IP Notebook, how do we browse through command history?

		2012-11-16T17:26:57+0000		Stuart Duffy		I need help! 2nd tables front left (left side). thanks.

		2012-11-16T17:29:10+0000		Janel Lee		is there a way to add comments on your line and have ipython ignore it?

		2012-11-16T17:29:57+0000		Jason Keller		# starts a comment, I think

		2012-11-16T17:30:04+0000		Cait Pickens		comments are made with the # sign

		2012-11-16T17:30:55+0000		Ian MacLeod		Multi-line comments can be made with triple quotes: '''This is a long comment across lines.'''

		2012-11-16T17:33:04+0000		Erick Scott		Be careful messing with list objects.

		2012-11-16T17:33:10+0000		Erick Scott		For example:

		2012-11-16T17:33:14+0000		Erick Scott		a = [1,2,3]

		2012-11-16T17:33:17+0000		Erick Scott		b= a

		2012-11-16T17:33:21+0000		Erick Scott		b[1] = 7

		2012-11-16T17:33:26+0000		Erick Scott		print a

		2012-11-16T17:33:34+0000		Erick Scott		[1, 7, 3, 4]

		2012-11-16T17:34:05+0000		Cait Pickens		@StuartDuffy raise hand

		2012-11-16T17:34:08+0000		Erick Scott		whoops, should be [1,7,3]

		2012-11-16T17:35:10+0000		Duane Rinehart		Does i++ structure exist in python?

		2012-11-16T17:35:17+0000		Cait Pickens		i += 1

		2012-11-16T17:35:47+0000		Katie Petrie		@ErickScott this is because list are mutable, right? Are tuples the immutable version?

		2012-11-16T17:35:51+0000		Erick Scott		i +=1 is the same as i = i+1

		2012-11-16T17:36:36+0000		Titus Brown		@KatiePetrie yes, tuples are immutable -- try l = (5,6,7) and then l[0] = '8'

		2012-11-16T17:36:38+0000		Erick Scott		tuples are immutable, and lists are mutable. However, it also has to do with the way python treats objects, which is bindings and not buckets

		2012-11-16T17:37:18+0000		Cait Pickens		re: command history in the notebook. you can edit any command you have in the cell you created originally. ex: have a cell that says i=1. now i want it to say i=2. i just edit the original cell. to have the same command a second time (in a separate cell), copy the cell and paste it in a new place. to see your command history, use %history

		2012-11-16T17:38:46+0000		Sujata Sovani		Are lists only one dimesnional? can you have multiple rows? matrix kinda data?

		2012-11-16T17:39:06+0000		Chris Baskerville		What is the dif between while and for loops?

		2012-11-16T17:39:15+0000		Erick Scott		lists can be multi-dimensional, just use list of lists

		2012-11-16T17:39:34+0000		Titus Brown		@SujataSovani You can nest lists, so have lists that contain lists. numpy arrays are a better, more efficient choice, tho.

		2012-11-16T17:39:35+0000		Erick Scott		eg. [[1,2,3],[4,5,6]]

		2012-11-16T17:39:58+0000		Titus Brown		@ChrisBaskerville while loops do something until a condition is met; for loops iterate over a list, until the list ends.

		2012-11-16T17:40:13+0000		Titus Brown		@ChrisBaskerville you can usually us either one but for loops turn out to be more natural for many occasions

		2012-11-16T17:45:41+0000		Cait Pickens		a for loop is used when you know exactly how many times you have to go through a list (example: for i in range(10)). a while loop would be used in a situation when you don't know how many times you will have to use the loop (for example: you have a while loop to see if a user enters the input "hi", which runs repeatedly until the user inputs "hi")

		2012-11-16T17:51:01+0000		Chris Baskerville		Python doesn't recognize the statement:

		2012-11-16T17:51:06+0000		Chris Baskerville		for i in gasses:

		2012-11-16T17:51:48+0000		Titus Brown		@ChrisBaskerville maybe with one s?

		2012-11-16T17:53:02+0000		Andrew Su		@ChrisBaskerville if you're still having a problem, raise your hand...

		2012-11-16T17:55:34+0000		Cait Pickens		some useful methods that you can use on lists: http://infohost.nmt.edu/tcc/help/pubs/python/web/list-methods.html

		2012-11-16T17:56:34+0000		Cait Pickens		like: reverse the entire list, sort the list, take the first/last item out of a list, extend the list with a second list

		2012-11-16T17:58:21+0000		Duane Rinehart		Rather than extend at end of array, how can I add at beginning of array?

		2012-11-16T17:58:22+0000		Erick Scott		you can see the methods for any object in python by using the dir() command, e.g. dir(gases)

		2012-11-16T18:00:00+0000		Cait Pickens		insert(index, item) puts an item in a list at a specified index

		2012-11-16T18:00:28+0000		Titus Brown		@DuaneRinehart so x.insert(0, 'foo')

		2012-11-16T18:00:37+0000		Cait Pickens		still looking for a way to insert multiple items at the beginning of a list...not sure abotu that.

		2012-11-16T18:01:04+0000		Titus Brown		@CaitPickens @DuaneRinehart to "insert" multiple items at the beginning of a list, just do x = newlist + x

		2012-11-16T18:01:12+0000		Titus Brown		Although that can get slow :)

		2012-11-16T18:01:24+0000		Katie Petrie		Which is first in the dictionary, the key or the assigned value?

		2012-11-16T18:01:57+0000		Titus Brown		key

		2012-11-16T18:02:02+0000		Titus Brown		@KatiePetrie the key

		2012-11-16T18:02:11+0000		Katie Petrie		thanks!

		2012-11-16T18:04:21+0000		Duane Rinehart		How can I sort a list (say alphabetically) or dictionary (by key)? - possibly with built-in function not loop

		2012-11-16T18:05:03+0000		Cait Pickens		list.sort()

		2012-11-16T18:05:09+0000		Sujata Sovani		can you have multiple values for one key like in the case of dictinary tel here, ph no, address etc.. Thanks.

		2012-11-16T18:05:34+0000		Cait Pickens		@DuaneRinehart see the sort example here: http://infohost.nmt.edu/tcc/help/pubs/python/web/list-methods.html

		2012-11-16T18:05:41+0000		Erick Scott		@SujataSovani no you can only have unique keys

		2012-11-16T18:06:16+0000		Cait Pickens		@SujataSovani keys must be unique and cannot be changed. but your value can be updated/changed. it could also be a list of items

		2012-11-16T18:07:08+0000		Cait Pickens		say you wanted to have a phone book, where the key is a last name ("smith") and the value is the person's info ("john", "555-555-5555", address)

		2012-11-16T18:07:08+0000		Qingpeng(Q.P.) Zhang		one value for one key, but the value can be a list or even another dicitonary

		2012-11-16T18:07:14+0000		Duane Rinehart		After loading in in fasta file (or through concatenation), how can I check for duplicate keys (and either not include or remove)?

		2012-11-16T18:08:08+0000		Cait Pickens		@DuaneRinehart do you mean loading in a fasta file into a dictionary and checking for duplicate keys after that?

		2012-11-16T18:08:19+0000		Duane Rinehart		yes

		2012-11-16T18:08:26+0000		Cait Pickens		@DuaneRinehart... i don't think you can even have a duplicate key, python would give you an error

		2012-11-16T18:08:44+0000		Titus Brown		@DuaneRinehart ask me during my session

		2012-11-16T18:08:45+0000		Cait Pickens		@DuaneRinehart so, you'd have to make sure you have clean data that doesn't have duplicate keys before you make it into a dict

		2012-11-16T18:09:09+0000		Titus Brown		@SujataSovani you can assign a list as a value in a dictionary.

		2012-11-16T18:09:22+0000		Titus Brown		@SujataSovani @CaitPickens to change keys, you have to delete the old one and insert a new one

		2012-11-16T18:09:27+0000		Cait Pickens		@DuaneRinehart or write an error function that checks to see if the key already exists, and if it does, then handle the error appropriately (possibly make a different key)

		2012-11-16T18:10:09+0000		Ian MacLeod		@DuaneRinehart You can use dict.keys() to get its keys. Also a set (http://docs.python.org/2/library/stdtypes.html#set) can be used for uniqueness.

		2012-11-16T18:11:57+0000		Cait Pickens		@IanMacLeod, @DuaneRinehart yes. there is a third type of data structure called a set. you can convert a list into a set, and then compare the size of the list to the size of the set. a set is like a list, but cannot have duplicate values in it. therefore, if there are duplicate values in a list, then the length of the list and the length of its corresponding set would be different.

		2012-11-16T18:14:42+0000		Jonathan HArt		Is there any way to predict the memory requirements of dictionaries? Seems python would be storing key, value and key hash for each entry

		2012-11-16T18:15:12+0000		Titus Brown		@JonathanHArt Not really. Um, ask me during the screed session (next)

		2012-11-16T18:16:22+0000		Cait Pickens		@JonathanHArt, maybe look for some people who have similar problems to this via google? for example, i see this problem someone encountered: http://stackoverflow.com/questions/5924151/python-dictionary-memory-usage

		2012-11-16T18:17:20+0000		Cait Pickens		@JonathanHArt here is another interesting discussion about ways to handle memory issues with dicts: http://stackoverflow.com/questions/327223/memory-efficient-alternatives-to-python-dictionaries

		2012-11-16T18:25:21+0000		Chris Baskerville		serious problem. I crashed python and I cant restart.

		2012-11-16T18:26:39+0000		Chris Baskerville		Fixed it. sorry.

		2012-11-16T18:27:41+0000		Jonathan HArt		Thanks for the suggestions. I figured it would be bad for large dictionaries, but I had no idea just how intensive it would be.

		2012-11-16T18:34:06+0000		Erick Scott		Here's a link to MIT's Intro to Computer Science Course (Python): http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/

		2012-11-16T18:34:20+0000		Erick Scott		great video lectures, notes, assignments, professors

		2012-11-16T18:34:53+0000		Cait Pickens		@ErickScott, yes, these lectures and course resources are great!

		2012-11-16T18:36:31+0000		Katie Petrie		@CaitPickens @ErickScott I third - that course is awesome and I've learned a lot

		2012-11-16T18:36:40+0000		Erick Scott		Also: http://www.khanacademy.org/science/computer-science/v/introduction-to-programs-data-types-and-variables

		2012-11-16T18:36:46+0000		Andrew Su		a few people are taking advantage of down time to work on their own data. If you want some help with that, feel free to ask one of the instructors or TAs...

		2012-11-16T18:38:54+0000		Erick Scott		Here are the best R tutorials I've found, you'll be up and running in 1 hour (just take a few notes while watching): http://www.youtube.com/user/Tutorlol?feature=watch

		2012-11-16T18:41:08+0000		Andrew Su		For those who are going to learn R, you _must_ use Rstudio (http://www.rstudio.com/ide/). python : ipython notebook :: R : Rstudio

		2012-11-16T18:41:35+0000		Titus Brown		@AndrewSu although note that ipynb also lets you use R :)

		2012-11-16T18:42:32+0000		Andrew Su		Yes, that sounds like a great option too (though I can't personally vouch for it)...

		2012-11-16T19:14:26+0000		Katie Petrie		I'm getting a 'no such file or directory' when I do the gunzip

		2012-11-16T19:14:33+0000		Andrew Su		raise hand?

		2012-11-16T19:15:33+0000		Erick Scott		you can cd into the python directory and run: gunzip -c 25k.fq.gz | less

		2012-11-16T19:16:02+0000		Erick Scott		cd ~/2012-11-scripps/python/

		2012-11-16T19:19:35+0000		Katie Petrie		so was the path/to/ just a placeholder?

		2012-11-16T19:20:34+0000		Cait Pickens		not sure i understand your question, @KatiePetrie

		2012-11-16T19:21:08+0000		Sujata Sovani		'/home/swc/2012-11-scripps/python/25k.fq.gz'

		2012-11-16T19:21:12+0000		Sujata Sovani		this works

		2012-11-16T19:21:34+0000		Katie Petrie		I just meant since it was named '/path/to' was it trying to indicate that we should fill in the appropriate path to wherever we placed the file on our machine

		2012-11-16T19:21:42+0000		Cait Pickens		yes

		2012-11-16T19:22:06+0000		Katie Petrie		(which in hindsight makes a lot of sense)

		2012-11-16T19:27:29+0000		Chris Baskerville		My current error in ipython:

		2012-11-16T19:27:33+0000		Chris Baskerville		IOError Traceback (most recent call last)
 in ()
 1 import screed
----> 2 for record in screed.open('/path/to/2012-11-scripps/python/25k.fq.gz'):
 3 print record.name
 4 print record.sequence
 5 print record.accuracy

		2012-11-16T19:36:09+0000		Cait Pickens		@ChrisBaskerville is your error resolved?

		2012-11-16T19:47:40+0000		Duane Rinehart		I can't find the 25k.fq.gz file in the python directory. Where can I download this?

		2012-11-16T19:47:52+0000		Andrew Su		raise hand?

		2012-11-16T19:49:21+0000		Andrew Su		@DuaneRinehart you need to do git pull origin master, but probably you are having an error, raise your hand so someone can help you work through it....

		2012-11-16T19:50:34+0000		Duane Rinehart		I did the git pull origin master already - need help

		2012-11-16T19:58:00+0000		Sujata Sovani		Sorry what does outfp do? Thanks.

		2012-11-16T19:58:57+0000		Andrew Su		@SujataSovani outfp is a file handle for writing the output file...

		2012-11-16T19:59:05+0000		Chris Baskerville		yes my error was resolved.

		2012-11-16T19:59:18+0000		Andrew Su		this command opens the file handleoutfp = open('out.fa', 'w')

		2012-11-16T19:59:18+0000		Andrew Su		this command opens the file handleoutfp = open('out.fa', 'w')

		2012-11-16T19:59:29+0000		Sujata Sovani		so only this >%s\n%s\n converts fastq to fasta - is tht right..thanks

		2012-11-16T20:00:15+0000		Andrew Su		hmmm, might be easier to look at the same screen. find me?

		2012-11-16T21:08:10+0000		Chris Baskerville		what I'm getting:

		2012-11-16T21:08:13+0000		Chris Baskerville		import blastparser
fp = open('python/sample-blast.txt')
for record in blastparser.parse_fp(fp):
 for hit in record.hits:
 for match in hit.matches:
 print record.query_name, hit.subject_name
 print match.subject_start, match.query_start
 print match.subject_end, match.query_end
 break

		2012-11-16T21:17:01+0000		Sujata Sovani		what does normed=True do?

		2012-11-16T21:17:08+0000		Titus Brown		evalues = []

fp = open('sample-blast.txt')
for record in blastparser.parse_fp(fp):
 for hit in record.hits:
 for match in hit.matches:
 evalues.append(match.expect)

		2012-11-16T21:18:09+0000		Andrew Su		reprinting for those who just joined...

evalues = []

fp = open('sample-blast.txt')
for record in blastparser.parse_fp(fp):
 for hit in record.hits:
 for match in hit.matches:
 evalues.append(match.expect)

		2012-11-16T21:21:08+0000		Titus Brown		fp = open('sample-blast.txt')

n = 0
for record in blastparser.parse_fp(fp):
 n += 1
 if n > 5: break
 for hit in record.hits:
 for match in hit.matches:
 print record.query_name, hit.subject_name, match.expect

		2012-11-16T21:22:25+0000		Andrew Su		NOTE! you must click the "Show full text" link if you want to copy-and-paste into your notebook...

		2012-11-16T21:24:26+0000		Titus Brown		fp = open('sample-blast.txt')
outfp = open('/tmp/blastout.txt', 'w')

n = 0
for record in blastparser.parse_fp(fp):
 n += 1
 if n > 5: break
 for hit in record.hits:
 for match in hit.matches:
 print >>outfp, record.query_name, hit.subject_name, match.expect
 break
 break

		2012-11-16T21:27:23+0000		Cait Pickens		I am going to answer some minute cards here for questions which are a bit more specific to certain people, or general announcements that we don't have time to cover in the lecture part of class.

		2012-11-16T21:28:19+0000		Cait Pickens		Q: Is there a mailing list for IPython? Yes! Here it is for users:http://mail.scipy.org/mailman/listinfo/ipython-user

		2012-11-16T21:28:35+0000		Titus Brown		import csv

fp = open('sample-blast.txt')
outfp = open('/tmp/blastout.csv', 'wb')
w = csv.writer(outfp)

for record in blastparser.parse_fp(fp):
 for hit in record.hits:
 for match in hit.matches:
 w.writerow([record.query_name, hit.subject_name, match.expect])
 break
 break
outfp.close()

		2012-11-16T21:30:46+0000		Cait Pickens		Q: What are the differences between ints, strings, floats, etc? Here is some documentation on Python built-in types: http://docs.python.org/2/library/stdtypes.html There's a lot of reading there, so just control+f to search for certain keywords.

		2012-11-16T21:33:35+0000		cristina irimia		 I'm having difficulties removing the "0: " from the following line: 0: 127.000 0.000 0.000 0.000 0.000. Any suggestions? thank you!

		2012-11-16T21:36:30+0000		Cait Pickens		Q: How to input lines, break them into strings, etc? If you want to read in lines from a file into Python, here is set of slides about how to open files, read things from them, and the errors you might run in to: http://www.cse.msu.edu/~cse231/lectures/Dillon/day10/07_Files_Exceptions.pdf And here are some slides about how to slice strings, replace parts of them, etc: http://www.cse.msu.edu/~cse231/lectures/Dillon/day06/06_Strings.4up.pdf

		2012-11-16T21:37:00+0000		Cait Pickens		@cristinairimia split_str = line.split(": ") will split your line at the ": "

		2012-11-16T21:37:05+0000		cristina irimia		looks good, thanks!

		2012-11-16T21:37:21+0000		Cait Pickens		then, split_str[1] will be everything after the ": "

		2012-11-16T21:40:12+0000		Qingpeng(Q.P.) Zhang		is there a way to browse the history?

		2012-11-16T21:40:31+0000		Cait Pickens		the chat history? not yet. working on getting a pdf printout of the convo

		2012-11-16T21:40:54+0000		Qingpeng(Q.P.) Zhang		yes, that will be helpful.

		2012-11-16T21:43:23+0000		Cait Pickens		Q: How do I store my data (or keep my data, or organize my data) as I work? The answer to this question is: data structures. There are a ton of different types of data structures that you can use in Python. We talked about structures like lists and dicts, which you will probably use frequently. Remember that you can have a list of lists (or a list of lists of lists...). Other structures you may want to use are sets, stacks, queues, and tuples. Here is some Python documentation on different data structures and how to use them: http://docs.python.org/2/tutorial/datastructures.html It is important to note that you always need to choose what sort of data structure best suits your data! You will definitely get better with practice.

		2012-11-16T21:48:26+0000		Cait Pickens		Q: What is the best way to execute scripts when they are finalized? To have a script that anyone can execute, you should create a .py file (rather than a .ipynb IPython Notebook file, which is more for interactive situations, writing a paper, giving presentations). Then, cd into the directory where your .py file is. Run the script with the command python myscript.py Note that if you have more than one install of Python on your machine, you may need to specify which version of Python to use: python2.7 myscript.py

		2012-11-16T21:53:03+0000		Cait Pickens		Q: I'm frustrated using VirtualBox and having lots of problems. What should I do? We teach using VirtualBox because it streamlines the install process for most students. The problem is that VirtualBox is slow on old computers. That isn't good for doing your own work, and we understand that. What should you do instead? Use the it-test7 server that Andrew had setup! You can ssh into it, and do your work via the terminal (or the notebook) like we showed you in class. :]

		2012-11-16T21:56:36+0000		Cait Pickens		Q: How do I shrink gaps in multiple sequence alignment files? This is a good question in general about how to manipulate a string from a file. If it has extra spaces or dashes that you want to remove, you can use: line.replace(old, new) where old is the character you want to remove and new is what you want to replace it with. So, imagine you have a string line = "hi-my-name-is-cait" and you want to take out the dashes. How? line = line.replace("-","") Note that the empty quotes mean a null value (replace the character with nothing)

		2012-11-16T21:59:53+0000		Duane Rinehart		How do I find out how long a process has been running from within screen?

		2012-11-16T21:59:54+0000		Andrew Su		***NOTE ABOUT IT-TEST7*** -- right now the server name is not set up correctly. You can use this command instead: 'ssh username@137.131.19.123', where you replace 'username' with your scripps username

		2012-11-16T22:00:10+0000		Andrew Su		contacting IT to fix so that you can use the name 'it-test7', will post here when it's fixed...

		2012-11-16T22:00:46+0000		Cait Pickens		@DuaneRinehart not sure. google? or ask tracy

		2012-11-16T22:03:05+0000		Ruth Huey		How do I download blastall?

		2012-11-16T22:04:34+0000		Cait Pickens		@RuthHuey ask tracy or titus during a break :]

		2012-11-16T22:05:53+0000		Andrew Su		@RuthHuey If you are using a server managed by Scripps IT (like garabaldi, for example), I'm pretty sure blastall will be preinstalled for all users...

		2012-11-16T22:05:55+0000		Ruth Huey		Actually, i just found it...

		2012-11-16T22:06:14+0000		Ruth Huey		Thanks...

		2012-11-16T22:18:20+0000		Duane Rinehart		answer for transcript about process time is: ps -aux | grep "blastall"

		2012-11-16T22:19:40+0000		Cait Pickens		@DuaneRinehart thank you :]

		2012-11-16T22:25:41+0000		Cait Pickens		Q: Who can access my stuff when I am on a shared server? I think this depends on how your IT department sets up the server. @AndrewSu, can you answer this question please?

		2012-11-16T22:29:36+0000		Cait Pickens		Q: How do I install Blast locally on my machine? Tracy is adding the link to this information on the course website here: http://swc-scripps.idyll.org/en/latest/day2.html It is under the useful unix tools heading

		2012-11-16T22:32:57+0000		Andrew Su		regarding the shared servers question -- standard set up is for each user to have their own home directory. This space is by default private to you, and you can give permissions to others via the 'chmod' command. IT has also set up shared group space, where each PI's group has a set allotment (1 TB I think). Contact the help desk to ask how to set that up...

		2012-11-16T22:37:04+0000		Cait Pickens		what about using the notebooks? how is that public?

		2012-11-16T22:37:27+0000		Titus Brown		http://ged.msu.edu/angus/tutorials-2012/index.html

		2012-11-16T22:37:49+0000		Cait Pickens		Q: How do you keep track of which screen is which if you run multiple? Look at the timestamp.

		2012-11-16T22:38:49+0000		Cait Pickens		Q: What does parsing mean? Parsing is just the process of reading in a text file and turning that information into something you can use. (http://en.wikipedia.org/wiki/Parsing)

		2012-11-16T22:39:47+0000		Cait Pickens		Q: Please post commands on hipchat? Yes, we will try to do this. Most (if not all) of the code should be available publicly in notebooks or on the website.

		2012-11-16T22:40:01+0000		Sujata Sovani		Cait, Is there a way to save this HipChat page to have all this info and your answers? Thanks.

		2012-11-16T22:40:16+0000		Cait Pickens		yes, we are going to give it to you at the end of the class :]

		2012-11-16T22:43:10+0000		Cait Pickens		Q: Which parts of your code do you test? When do you update the tests? The broad answer... You should test all parts of your code! And, you should update the tests (or write new ones) any time you make changes that cannot be tested by the existing tests you have. You should also run your tests on your code whenever you change your code, to make sure you didn't accidentally break anything!

		2012-11-16T22:44:27+0000		Cait Pickens		Q: This is too much information to process! How can I absorb all of it? ...We definitely don't expect you absorb all of it right now, over this two day period. Instead, we want you to see a lot of different things you can use, give you the basic idea of how they work (so you are familiar with them), and give you resources to continue using them and teach yourself (and friends) more in the future.

		2012-11-16T22:45:16+0000		Cait Pickens		Q: How do I use Blast with the test7 server? @AndrewSu, can you answer this? Where is the database?

		2012-11-16T22:47:42+0000		Cait Pickens		Q: Can I ssh into my home computer? Short answer? Not usually. Your home computer must have ssh server capabilities set up on it, which is not usually the case. You *can* set them up, if this feature would be super useful to you. This is something that you should talk to Andrew or the IT people about.

		2012-11-16T22:49:16+0000		Andrew Su		Q: How do I use Blast with the test7 server? A: Sadly, it-test7 is not set up for blast searching. If that's something you need, send an email to JC Ducom and cc me...

		2012-11-16T22:49:18+0000		Cait Pickens		A bit more about functions: A function is a piece of code that you define because you plan to use that code repeatedly. Functions can take in parameters (called arguments) and can return values. In order to run the function code, you need to *call* the function. One function that we have already used a lot in class is "print"

		2012-11-16T22:50:30+0000		Cait Pickens		Other functions are things like string.replace() (which some have used to replace characters in a string value), list.append() (which adds an element to the end of the list), etc. Titus is writing his own function in the demo right now.

		2012-11-16T23:13:43+0000		Titus Brown		%%file gc-of-seqs.py
import sys
import screed
import calc_gc

filename = sys.argv[1]
total_gc = []
for record in screed.open(filename):
 gc = calc_gc.calc_gc(record.sequence)
 total_gc.append(gc)

print sum(total_gc) / float(len(total_gc))

		2012-11-16T23:13:48+0000		Titus Brown		!python gc-of-seqs.py 25k.fq.gz

		2012-11-16T23:13:52+0000		Titus Brown		%%file test_gc_script.py
import subprocess

correct_output = "0.607911191366\n"

def test_run():
 p = subprocess.Popen('python gc-of-seqs.py 25k.fq.gz', shell=True, stdout=subprocess.PIPE)
 (stdout, stderr) = p.communicate()
 assert stdout == correct_output

		2012-11-16T23:13:55+0000		Titus Brown		!nosetests test_gc_script.py

		2012-11-16T23:16:01+0000		Titus Brown		http://swc-scripps.idyll.org/en/latest/index.html

		2012-11-16T23:18:01+0000		Sujata Sovani		https://github.com/swcarpentry/2012-11-scripps

		2012-11-16T23:36:40+0000		Katie Petrie		How do we leave or log out of the amazon server?

		2012-11-16T23:36:49+0000		Katie Petrie		Do we just close the shell?

		2012-11-16T23:37:06+0000		Janani Rangarajan		exit

		2012-11-16T23:37:15+0000		Katie Petrie		thanks

		2012-11-16T23:37:16+0000		Andrew Su		@KatiePetrie yes, you can do that. Or type "exit" at the command prompt...

		2012-11-16T23:46:11+0000		Titus Brown		https://docs.google.com/document/d/1g13a9mRoepTp4X6KQ9oms-e4mCmjyWoKnnh0hkRMxTc/edit

		2012-11-16T23:47:56+0000		ying fan			3:46 PM
https://docs.google.com/document/d/1g13a9mRoepTp4X6KQ9oms-e4mCmjyWoKnnh0hkRMxTc/edit

search.html

 Navigation

 		
 index

 		SWC / Scripps / 2012-11 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

python-packages.html

 Navigation

 		
 index

 		SWC / Scripps / 2012-11 0.1 documentation »

Installing Python packages; useful Python packages

(You will want to do a ‘git pull origin master’ in your 2012-11-scripps
directory to get the latest data.)

The easiest way to install Python packages is to use pip, the Python
package installer.

pip and Anaconda on OS X

If you’re using anaconda on OS X, you have pip installed; but you will
need to refer to the python package installer by a full path name:

~/anaconda/bin/pip

More generally, you’ll need to prefix many of the commands below with
‘~/anaconda/bin/’. You can set this as a default for your current
shell by doing:

export PATH=~/anaconda/bin:$PATH

(or you can add that command to the file ~/.bashrc using nano. Ask a TA
for help!)

pip on VirtualBox

If you’re running on VirtualBox, you may need to install pip first
by doing:

sudo apt-get install python-pip

at the terminal.

(If you’re running any other way, you should already have pip installed.)

OPTIONAL: Using virtualenv

Down the road, if you’re running on a machine where you don’t have
sysadmin access, you can use a python package called ‘virtualenv’ to
set up your own installation of Python into which you can install your
own packages. Once virtualenv is installed (by a sysadmin,
presumably) It’s as simple as

python -m virtualenv NAME

where NAME is the name of your workspace, e.g.

python -m virtualenv env

followed by

. env/bin/activate

From that point on, you will be able to use pip to install things
within this workspace, and Python (again from within that workspace)
will be able to access and use those installed packages.

Python packages

There are, literally, thousands of Python packages. The basic deal
is this: Python comes with “batteries included”, which means that you
can do amazing numbers of things with just a basic Python install.
The anaconda install and VirtualBox virtual machine come with tons
more stuff. But there’s always the need to use an updated version
of something, or a little package that someone wrote that addresses
just your concern... so you’ll always need to install stuff.

Here’s how to install and use some potentially useful packages from
my lab, but there’s a whole world of Python packages out there.
See http://docs.python.org/2/library for packages that come included
with Python, and http://pypi.python.org/pypi for the Python package
index for third-party packages.

screed

Screed is a little Python package from Titus’s lab that reads in
DNA sequences – more explicitly, it’s a FASTA and FASTQ parser.
You can see some documentation here:

http://screed.readthedocs.org/en/latest/

But how do you use it?

To install screed directly from github, do:

pip install git+https://github.com/ged-lab/screed.git

Using screed:

screed can read FASTA and FASTQ files, as well as gzip or bzip2 versions
of those files. For example, in the python directory there is a file
called ‘25k.fq.gz’; check it out:

gunzip -c 2012-11-scripps/python/25k.fq.gz | less

(type ‘q’ to get out of less, and space bar to scroll through the file.)

Note:

All of the below screed commands are in the using-screed.ipynb notebook [http://nbviewer.ipython.org/urls/raw.github.com/swcarpentry/2012-11-scripps/master/python/using-screed.ipynb].

screed, in a nutshell, lets you read in all that data and access it
in Python. Try:

import screed
for record in screed.open('/path/to/2012-11-scripps/python/25k.fq.gz'):
 print record.name
 print record.sequence
 print record.accuracy
 break

A couple of points here.

First, there are 25,000 sequences in this file. You might want to avoid
printing them all out (hence the ‘break’ command at the end of the loop!)

Second, you can use this for short read data or genomic sequences or
whatever. We’ve mostly designed it for short-read data but it works
fine for genome-scale data (which is, after all, rather smaller than
most short-read data...)

Third, you can open any kind of sequence file with this command.

This can be a simple and handy way to extract a particular sequence
from a large file –

for record in screed.open('/path/to/2012-11-scripps/python/25k.fq.gz'):
 if record.name == '@895:1:4:1596:8538/2':
 break

do stuff with record

You can even pull out a list:

list_of_names = ['@895:1:4:1596:8538/2', '@895:1:4:1596:6003/2']
list_of_records = []

for record in screed.open('/path/to/2012-11-scripps/python/25k.fq.gz'):
 if record.name in list_of_names:
 list_of_records.append(record)

do stuff with list_of_records

(You might want to use a ‘set’ here, note.)

So how is this stuff useful!?

Well, here’s one simple example –

n = 0.
m = 0.
for record in screed.open('/path/to/2012-11-scripps/python/25k.fq.gz'):
 n += len(record.sequence)
 m += record.sequence.count('G') + record.sequence.count('C')

print '%.3f G/C content' % (m / n,)

You can also do your quality trimming, or analysis of the first bases,
or... whatever.

Another example –

outfp = open('out.fa', 'w')
for record in screed.open('/path/to/2012-11-scripps/python/25k.fq.gz'):
 outfp.write('>%s\n%s\n' % (record.name, record.sequence))

This converts FASTQ to FASTA.

(Does anyone want to see random access?)

blastparser

blastparser is another little Python package from Titus’s lab
that reads in BLAST output and makes it accessible to Python.
This is really the only documentation :).

To install blastparser directly from github, do:

pip install git+https://github.com/ged-lab/blastparser.git

blastparser is both less mature and more complicated to use than
screed, because BLAST files are more complicated than FASTA files.

Before we move forward, let’s look at a BLAST output file – check out
2012-11-scripps/python/sample-blast.txt:

less python/sample-blast.txt

Each query is a record; each record has a bunch of hits; each hit has
a bunch of matches!

Here’s how blastparser does it:

import blastparser
fp = open('python/sample-blast.txt')
for record in blastparser.parse_fp(fp):
 for hit in record.hits:
 for match in hit.matches:
 print record.query_name, hit.subject_name
 print match.subject_start, match.query_start
 print match.subject_end, match.query_end
 break

A few things to cover –

		figuring out what is stored in each object

		print out to csv

See using-blastparser.ipynb [http://nbviewer.ipython.org/urls/raw.github.com/swcarpentry/2012-11-scripps/master/python/using-blastparser.ipynb].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Installing Python packages; useful Python packages
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

instructors.html

 Navigation

 		
 index

 		SWC / Scripps / 2012-11 0.1 documentation »

Your Intrepid Instructors

Tracy Teal <tkteal@gmail.com>

Titus Brown <ctb@msu.edu> – blog [http://ivory.idyll.org/blog/] and Twitter [http://twitter.com/ctitusbrown].

Cait Pickens <picken19@msu.edu>

Qingpeng Zhang <qingpeng@gmail.com>

and thanks to Andrew Su for arranging everything and helping out as well!

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Your Intrepid Instructors
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_static/ajax-loader.gif

_static/14.html
		2012-11-14T00:01:21+0000		Andrew Su		Hi @JanelLee let us know if you have any questions...

		2012-11-14T00:57:02+0000		Janel Lee		Hi! I do have a question... Which Mac or Windows OS would be easier to work with for Boot Camp?

		2012-11-14T01:04:03+0000		Salvatore Loguercio		Hi Janel, Mac should be easier..

		2012-11-14T01:06:01+0000		Salvatore Loguercio		the specific OS version it's not important

		2012-11-14T01:08:10+0000		Janel Lee		Okay.. I'm still getting used to working on a Mac. :)

		2012-11-14T01:11:18+0000		Salvatore Loguercio		No problem :)

		2012-11-14T01:18:11+0000		Andrew Su		@JanelLee, I have yet to play around with virtuabox, but note that once you do install it and load the large "virtual machine" file mentioned in the instructions, the experience should be pretty much the same via mac or windows. So either one should be just fine...

		2012-11-14T17:00:34+0000		Ruth Huey		Is there a simple way to check whether I have installed Anaconda CE successfully?

		2012-11-14T17:01:37+0000		Andrew Su		Hi Ruth, good question... Let me check...

		2012-11-14T17:07:26+0000		Andrew Su		Ruth, if you kept all the defaults during the installation, it's most likely true that everything installed correctly. You can confirm that python is working by going to c:\anaconda\python directory (or similar) and double clicking the "python.exe" file. you should get a window that looks like one shown above.

		2012-11-14T17:10:39+0000		Ruth Huey		I'm working on mac os

		2012-11-14T17:11:28+0000		Andrew Su		do you know what folder you installed into?

		2012-11-14T17:13:58+0000		Benjamin Good		I'm testing the default install now.. awaiting download

		2012-11-14T17:15:28+0000		Ruth Huey		AHA! found it:python2.7:

		2012-11-14T17:17:32+0000		Benjamin Good		@RuthHuey did you do this >bash AnacondaCE-1.1-macosx.sh

		2012-11-14T17:17:34+0000		Benjamin Good		?

		2012-11-14T17:17:56+0000		Ruth Huey		yes

		2012-11-14T17:18:46+0000		Benjamin Good		depending on where you started that from, you should be able to do something like this:

		2012-11-14T17:18:46+0000		Benjamin Good		 /Users/bgood/anaconda/bin/anaconda-launcher

		2012-11-14T17:19:09+0000		Benjamin Good		replace /Users/bgood/anaconda with the path that matches your system

		2012-11-14T17:19:41+0000		Benjamin Good		executing that in the terminal should launch anaconda in your web browser

		2012-11-14T17:20:38+0000		Benjamin Good		If you are having trouble finding it, you can use the Spotlight search box, and look for anaconda-launcher

		2012-11-14T17:21:13+0000		Benjamin Good		double clicking on that should also launch it.

		2012-11-14T17:23:58+0000		Ruth Huey		alas, that raised this error: socket.error: [Errno 48] Address already in use: ('', 5001)....[my web browser is Firefox]

		2012-11-14T17:24:24+0000		Benjamin Good		Hmm..

		2012-11-14T17:24:58+0000		Benjamin Good		Maybe try quitting firefox and trying the command again - it should start up on its own.

		2012-11-14T17:25:54+0000		Benjamin Good		It might already be open though..

		2012-11-14T17:26:24+0000		Benjamin Good		It should show up in a web browser at this url

		2012-11-14T17:26:25+0000		Benjamin Good		http://localhost:5001/launcher

		2012-11-14T17:28:22+0000		Ruth Huey		yes that link works!

		2012-11-14T17:29:00+0000		Andrew Su		Great! Then the two of you are already ahead of me... ;) Thanks Ben...

		2012-11-14T17:29:05+0000		Benjamin Good		Then you have anaconda installed! ;)

		2012-11-14T17:29:13+0000		Benjamin Good		(dance)

		2012-11-14T17:29:27+0000		Ruth Huey		:)

		2012-11-14T17:30:09+0000		Ruth Huey		Looking forward to the next two days. Many thanks!

		2012-11-14T18:45:45+0000		Janel Lee		On Windows, to set up Git, do we want to set up the PATH so that we can run it from the Windows Command Prompt or Use Git Bash only? (I had trouble downloading Anaconda on a Mac, so I'm trying Windows)

		2012-11-14T18:49:02+0000		Andrew Su		Hi Janel,

		2012-11-14T18:49:31+0000		Andrew Su		my guess is that the default settings will be just fine -- if not, I'm pretty sure we can adjust them just by rerunning the installer later...

		2012-11-14T18:50:16+0000		Janel Lee		@AndrewSu Alrighty, thanks! :)

_static/file.png

SSH/index.html

 Navigation

 		
 index

 		SWC / Scripps / 2012-11 0.1 documentation »

Useful UNIX tools

Updated and presented by: Tracy Teal

SSH

What is ssh?

ssh stands for ‘secure shell’. It’s a way of connecting to another computer
without sending your passwords in the clear. telnet, for example, is like ssh
but your password is not encrypted when it’s sent.

We’re going to ssh into a Amazon instance that was set up for this class.

If you want more information on Amazon instances, Titus has a nice reference
here: http://ged.msu.edu/angus/tutorials/renting-a-computer-from-amazon.html

You can log in to this machine by typing

ssh swc@ec2-23-21-29-27.compute-1.amazonaws.com

The password is the name of this institute.

Now you’re on the Amazon instance!

Here we see the files we saw in the 1-Shell lesson and we can do all the things
here to them that we could on our systems yesterday. Run through a few of the
shell commands we did yesterday.

Screen

Now say you’re on this instance and you want to run a program that’s going
to take a long time, and you want to be able to log out of the instance
and still have it run. Here is where ‘screen’ is your friend.

Type

screen

You’ll get the prompt back again and you can do just what you normally do. Type
‘ls’ for instance. Now, though, type ‘exit’. You’re still at a prompt. All you
did was exit out of screen.

Start screen again, by typing ‘screen’

Do an ‘ls’ again. Now we want to detach from the screen, so that the process could
keep running while we log off of Amazon or any remote machine. To detach

Ctrl-A Ctrl-D

If you want to reattach to that screen, type

screen -r

If you have multiple screens running, it will tell you that and you have to pick

screen -r screen-number

That’s all there is to screen.

A test example

Now let’s try a test example of logging on to a remote machine, running screen,
running a blast at the command line, detaching from the screen and then coming
back to check on the results.

Follow the instructions above for loggin in and starting screen

Now to run command line blast

You can download command line blast from NCBI. It’s called ‘blastall’

If you type
blastall -
You get all the options

This is a standard blastall command

blastall -e 1e-05 -p tblastx -d test_fasta -i seqs.fa -o seqs.blast

-e is the e-value cutoff you want to use. Any matches higher than that will not be returned
-p is the program - tblastx, blastx, blastn or tblastn
-d is the database
-i is the input file
-o is the output file
-m is the output type you want

If you’re parsing the output, then you want to use -m 8. It outputs a tab delimited format that’s easy to look through
The default shows you all the alignments

If you do use -m 8 this is the information in each column

Query id # Subject id # % identity # alignment length # number of mismatches # number of gap openings # position of query start # position of query end # position of subject start # position of subject end # e-value of a hit # bit score of a hit

So, we’ll run blastall on a test dataset

There are some test fasta files in the ‘fasta’ directory

Go in to that directory. You can use any of these files as the input fasta file.

The blast database is: /home/swc/blastdb/nirK_ref_Rh

blastall -e 1e-05 -p tblastx -d /home/swc/blastdb/nirK_ref_Rh -i oneseq.fasta -o seqs.blast

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2012, Software Carpentry.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Useful UNIX tools
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_static/15.html
		2012-11-15T03:56:29+0000		Anita Pottekat		does anybody know which OS to be installed with Virtualbox ?

		2012-11-15T06:53:29+0000		Meihui Hsu		I am having problem to install AnacondaCE in My Visa notebook. It always freezes in the installer.

		2012-11-15T06:55:06+0000		Max Nanis		Does a message or error prompt provide any additional details?

		2012-11-15T06:56:34+0000		Meihui Hsu		No other message show up. I look at the task manager, the CPU is "0" for thr AnacondaCE installer.

		2012-11-15T17:12:39+0000		vijay gupta		hi

		2012-11-15T17:22:56+0000		Cait Pickens		Here is the course website: http://swc-scripps.idyll.org/en/latest/introductions.html

		2012-11-15T17:23:41+0000		Andrew Su		@anita, did you download the big 2GB file?

		2012-11-15T17:36:01+0000		Jonathan HArt		fyi to get back out of virtualbox it is Right-ctrl + F

		2012-11-15T17:36:27+0000		Andrew Su		Great tip, thanks @JonathanHArt

		2012-11-15T17:57:10+0000		Erick Scott		Be careful with the rm command there is no going back

		2012-11-15T17:58:29+0000		Erick Scott		"cd -" will take you to the last directory you were in (you don't need the quotes)

		2012-11-15T18:01:02+0000		Cait Pickens		Will someone try downloading this .zip file from my Dropbox account? See if you can get it without signing up for Dropbox! https://www.dropbox.com/s/j1trh51xgx58g8f/2012-11-scripps.zip

		2012-11-15T18:01:46+0000		Mahdi Moosa		Yep

		2012-11-15T18:02:00+0000		Mahdi Moosa		I tried to download and it seems I can without logging in@Cat

		2012-11-15T18:02:35+0000		Cait Pickens		https://www.dropbox.com/s/j1trh51xgx58g8f/2012-11-scripps.zip

		2012-11-15T18:02:45+0000		Cait Pickens		Above is the Dropbox link

		2012-11-15T18:03:32+0000		Jonathan HArt		can get it with "wget https: //www.dropbox.com/s/j1trh51xgx58g8f/2012-11-scripps.zip"

		2012-11-15T18:03:37+0000		Jonathan HArt		to drop it where you are

		2012-11-15T18:06:57+0000		Erick Scott		 https://www.dropbox.com/s/j1trh51xgx58g8f/2012-11-scripps.zip

		2012-11-15T18:10:53+0000		Cait Pickens		Here is an ALWAYS UPDATED zip file of the git repository: https://github.com/swcarpentry/2012-11-scripps/archive/master.zip

		2012-11-15T18:11:25+0000		Cait Pickens		Whenever we add new course materials (throughout the day) on git, you can get a new, updated version of the files using that link.

		2012-11-15T18:12:00+0000		Cait Pickens		@AndrewSu - Will you please update the zip file link at the top? Thanks!

		2012-11-15T18:19:00+0000		Andrew Su		@CaitPickens done!

		2012-11-15T18:21:26+0000		Jonathan HArt		ls /bin/*a*b* /bin/*b*a*

		2012-11-15T18:24:36+0000		Jonathan HArt		might also want to mention hitting up and down to get to the last command entered

		2012-11-15T18:24:48+0000		Jonathan HArt		great way to fix a typo

		2012-11-15T18:28:21+0000		Anita Pottekat		Once I download the zip file and extact it how to get it imported into Cygwin terminal?

		2012-11-15T18:29:20+0000		Andrew Su		@AnitaPottekat you need to use 'cd' to browse to the directory you unpacked the zip file to...

		2012-11-15T18:29:23+0000		Jonathan HArt		to run an command from history

		2012-11-15T18:29:31+0000		Jonathan HArt		it is !(number) in bash

		2012-11-15T18:29:43+0000		Jonathan HArt		so #594 would be !594

		2012-11-15T19:11:09+0000		Andrew Su		how we doing, people following along okay?

		2012-11-15T19:11:22+0000		Andrew Su		If not, please raise hands, ask questions, etc...

		2012-11-15T19:13:51+0000		Ashley Pratt		Yes, following along :)

		2012-11-15T19:17:03+0000		Erick Scott		Following along

		2012-11-15T19:18:21+0000		Anita Pottekat		Yes..going good

		2012-11-15T19:19:25+0000		Dejan Caglic		Doing well, thanks for asking :P

		2012-11-15T19:21:20+0000		Andrew Su		question about navigating in 'less'. To go to the bottom of the file, type 'G' (no quotes, capital letter). To go to the top of a file, type '1G'. To go to line 50, type '50G'

		2012-11-15T19:24:53+0000		Greg Wilson		Greetings from Toronto

		2012-11-15T19:28:20+0000		Janel Lee		Doing well!

		2012-11-15T19:28:29+0000		Erick Scott		Another note on the rm command. rm -i prompts the user to confirm he/she wants to remove the file. If you get in the habit of using the -i flag you will likely save yourself a few tears.

		2012-11-15T19:29:42+0000		Jonathan HArt		man rm

		2012-11-15T19:32:03+0000		Andrew Su		ADVANCED TIP: if you *always* find yourself typing rm -i (or think that should be the default), you can change that in your preferences. For bash, that's stored in your .bashrc file. beyond the scope right now, but you can google it later...

		2012-11-15T19:38:01+0000		Titus Brown		During break, I would like to talk with someone who installed Anaconda on Mac OS X, and someone who installed Anaconda on Windows, please :)

		2012-11-15T19:39:27+0000		Andrew Su		@BenjaminGood, one of my group members, successfully installed on Mac. I _attempted_ to install on windows but am not sure I succeeded or not. (Couldn't get to the launcher...)

		2012-11-15T19:41:09+0000		Benjamin Good		@TitusBrown I did, and helped Ruth Huey in the class as well.

		2012-11-15T19:41:30+0000		Titus Brown		OK. Can we connect over reak?

		2012-11-15T19:41:32+0000		Titus Brown		break?

		2012-11-15T19:41:52+0000		Benjamin Good		@TitusBrown I never did anythign with it, but did get it to launch. Sure, I am upstairs right now. When is your break ?

		2012-11-15T19:58:15+0000		Andrew Su		lunch! (chompy)

		2012-11-15T19:58:42+0000		Andrew Su		sorry survey first...

		2012-11-15T20:58:39+0000		Jonathan HArt		Virtualbox + anaconda CE fails because of 32bit host + 64bit executable

		2012-11-15T21:00:55+0000		Andrew Su		@JonathanHArt I think if you have virtualbox with the software carpentry image file, you should have everything you need -- no need to think about anaconda at all...

		2012-11-15T21:03:05+0000		Katie Petrie		how do we escape the man - viewing mode?

		2012-11-15T21:03:13+0000		Andrew Su		hit 'q'

		2012-11-15T21:03:23+0000		Katie Petrie		thanks.

		2012-11-15T21:19:06+0000		Anita Pottekat		When you sort is there a way to specify to sort different variables ?

		2012-11-15T21:19:18+0000		Andrew Su		question about single quotes versus double quotes -- makes a difference with some special characters, but for plain text search terms it doesn't matter...

		2012-11-15T21:19:40+0000		Andrew Su		@AnitaPottekat do you mean sorting based on different columns?

		2012-11-15T21:20:39+0000		Anita Pottekat		yes

		2012-11-15T21:21:27+0000		Anita Pottekat		I think as we discussed, I could look at "man" or google :)

		2012-11-15T21:21:37+0000		Andrew Su		the man page has the answer ('man sort'), but it's a bit cryptic...

		2012-11-15T21:21:54+0000		Andrew Su		the option you want to use is '-k'

		2012-11-15T21:22:02+0000		Anita Pottekat		Okay great .. Thank you !

		2012-11-15T21:22:20+0000		Andrew Su		'-k3' means sort on 3rd column...

		2012-11-15T21:26:07+0000		Claire Levy		I don't appear to have ./run-in-vm.sh in my python file (running windows)

		2012-11-15T21:28:07+0000		Andrew Su		raise your hand please...

		2012-11-15T21:32:22+0000		Anita Pottekat		Should I try the Anaconda or is there any other way for windows ?

		2012-11-15T21:32:34+0000		Anita Pottekat		My Virtual box does not work !

		2012-11-15T21:32:51+0000		vijay gupta		same here

		2012-11-15T21:45:51+0000		cristina irimia		http://code.google.com/p/git-osx-installer/issues/detail?id=81 link for people with older (10.5.8) version of mac os to fix git

		2012-11-15T22:10:03+0000		Andrew Su		I'm assuming it's quiet in here because everyone is rapt with attention and programming along. (but please post or raise your hand if not!)

		2012-11-15T22:25:06+0000		cristina irimia		http://code.google.com/p/git-osx-installer/issues/detail?id=81 link for people with older (10.5.8) version of mac os to fix git

		2012-11-15T22:28:12+0000		cristina irimia		Hi, how do I make the help window appear in the Pyton notebook ?

		2012-11-15T22:35:23+0000		Tracy Teal		help for the iPython notebook or for P